首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20758篇
  免费   3888篇
  国内免费   2961篇
化学   15410篇
晶体学   397篇
力学   1154篇
综合类   229篇
数学   2031篇
物理学   8386篇
  2024年   31篇
  2023年   453篇
  2022年   567篇
  2021年   808篇
  2020年   1050篇
  2019年   1017篇
  2018年   857篇
  2017年   831篇
  2016年   1147篇
  2015年   1177篇
  2014年   1482篇
  2013年   1801篇
  2012年   2038篇
  2011年   2111篇
  2010年   1488篇
  2009年   1313篇
  2008年   1562篇
  2007年   1265篇
  2006年   1117篇
  2005年   882篇
  2004年   671篇
  2003年   540篇
  2002年   416篇
  2001年   328篇
  2000年   319篇
  1999年   319篇
  1998年   243篇
  1997年   206篇
  1996年   252篇
  1995年   179篇
  1994年   177篇
  1993年   153篇
  1992年   124篇
  1991年   116篇
  1990年   98篇
  1989年   78篇
  1988年   67篇
  1987年   49篇
  1986年   59篇
  1985年   43篇
  1984年   26篇
  1983年   19篇
  1982年   22篇
  1981年   17篇
  1980年   11篇
  1979年   8篇
  1975年   7篇
  1974年   6篇
  1970年   12篇
  1937年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
A novel organoantimony complex of 6-cyclohexyl-6,7-dihydrodibenzo[c,f] [1,5]azastibocin-12(5H)-yl nitrate ( 2 ) was synthesized and systematically characterized by techniques such as NMR spectra, TG-DSC, and X-ray diffraction. It was found that the complex 2 exhibits relatively strong Lewis acidity (3.3 < Ho ≤ 4.8) and could be employed as a water tolerant Lewis acid catalyst for the synthesis of synthetically valuable benzimidazole derivatives starting from aldehydes and arylenediamines. This catalytic system shows excellent tolerance toward a wide variety of functional groups, such as methyl, methoxyl, fluoro, chloro, bromo, nitro, cyan, trifluoromethyl, 1-naphthaldehyde, furfural and n-butyl, together with facile reusability in 5 times scale enlarged synthesis.  相似文献   
102.
Searching for new anti-poisoning Pt-based catalysts with enhanced activity for alcohol oxidation is the key in direct alcohol fuel cells (DAFCs). However, in the traditional strategy for designing bimetallic or multimetallic alloy is still difficult to achieve a satisfactory heterogeneous electrocatalyst because the activity often depends on only the surface atoms. Herein, we fabricate the multicomponent active sites by creating a sulfide structure on 1D PtNiCo trimetallic nanowires (NWs), to give a PtNiCo/NiCoS interface NWs (IFNWs). Owing to the presence of sulfide interfaces, the PtNiCo/NiCoS IFNWs enable an impressive methanol/ethanol oxidation reaction (MOR/EOR) performance and excellent anti-CO poisoning tolerance. They have the MOR and EOR mass activities of 2.25 Amg-1Pt and 1.62 Amg-1Pt, around 1.26, 3.21 and 1.46, 2.96 times higher than those of PtNiCo NWs and commercial Pt/C, respectively. CO-stripping and XPS measurements further demonstrate that the new interfacial structure and optimal bonding of Pt−CO can result in accelerating the removal of surface adsorbed carbonaceous intermediates. Moreover, such a unique structure has also demonstrated a much-improved ability for the electrochemical detection of some important molecules (H2O2 and NH2NH2).  相似文献   
103.
104.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   
105.
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP) n (n=1–3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40–0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D -π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D -π-A-D multipolar array.  相似文献   
106.
To develop efficient adsorbent materials for storage and separation of C2H2, an unprecedented supercage MOF, [Me2NH2]⋅[Zn3(ALP)(TDC)2.5]⋅3.5DMF⋅2 H2O ( 1 ) was constructed through medicinal molecule allopurinol (ALP) and S-containing 2,5-thiophenedicarboxylic acid (H2TDC). 1 contains a novel linear trinuclear cluster that is composed by ALP and carboxylates and forms a final uncommon 5-connected yfy topological framework. The framework possesses three types of interlinked cages decorated by rich functional sites, and reveals not only high adsorption capacity for C2H2 but also excellent selective separation for C2H2/CO2 and C2H2/CH4 at 298 K. Dynamic breakthrough experiments on C2H2/CO2 (1:1) mixture and C2H2/CH4 (1:1) mixture also demonstrated the potential of the material to separate C2H2 from CO2 or CH4 mixtures. Molecular simulations were also studied to identify the different CO2- and C2H2- binding sites in 1 , such as carboxylate groups, S atoms and carbonyl groups.  相似文献   
107.
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.  相似文献   
108.
109.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
110.
Journal of Radioanalytical and Nuclear Chemistry - The stable isotope-labeled rosuvastatin was requested in order to fully understand the metabolic process of rosuvastatin. An effective synthesis...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号